A Jacobi matrix inverse eigenvalue problem with mixed data
نویسندگان
چکیده
منابع مشابه
On the Jacobi Matrix Inverse Eigenvalue Problem with Mixed Given Data
Jacobi Matrices (real symmetric tridiagonal matrices) have a wide range of applications in physics and engineering, and are closely and non-trivially linked with many other mathematical objects, such as orthogonal polynomial, one dimensional Schrödinger operators and the Sturm-Liouville problem. In the past couple of decades, constructing Jacobi matrices from different types of data was studied...
متن کاملStability estimates for the Jacobi inverse eigenvalue problem
We present different stability estimates for the Jacobi inverse eigenvalue problem. First, we give upper bounds expressed in terms of quadrature data and not having weights in denominators. The technique of orthonormal polynomials and integral representation of Hankel determinants is used. Our bounds exhibit only polynomial growth in the problem’s dimension (see [4]). It has been shown that the...
متن کاملA Test Matrix for an Inverse Eigenvalue Problem
We present a real symmetric tridiagonalmatrix of order nwhose eigenvalues are {2k}n−1 k=0 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l + 1}n−2 l=0 . Thematrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2013
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.07.032